منابع مشابه
Determination of a jump by Fourier and Fourier-Chebyshev series
By observing the equivalence of assertions on determining the jump of a function by its differentiated or integrated Fourier series, we generalize a previous result of Kvernadze, Hagstrom and Shapiro to the whole class of functions of harmonic bounded variation. This is achieved without the finiteness assumption on the number of discontinuities. Two results on determination of ...
متن کاملLaplace Series and Sets of Logarithmic Capacity Zero
In the principal theorems of [2] and [3] sets of capacity zero ("capacity" will mean "logarithmic capacity" in this note) appear in the hypotheses. More specifically, conditions like finiteness of generalized Laplacians or of Poisson sums are assumed to hold everywhere except possibly on a closed set of capacity zero; these sets play the role of sets of uniqueness. The present note will show th...
متن کاملDiscrete–time Fourier Series and Fourier Transforms
We now start considering discrete–time signals. A discrete–time signal is a function (real or complex valued) whose argument runs over the integers, rather than over the real line. We shall use square brackets, as in x[n], for discrete–time signals and round parentheses, as in x(t), for continuous–time signals. This is the notation used in EECE 359 and EECE 369. Discrete–time signals arise in t...
متن کاملDiscrete–time Fourier Series and Fourier Transforms
We now start considering discrete–time signals. A discrete–time signal is a function (real or complex valued) whose argument runs over the integers, rather than over the real line. We shall use square brackets, as in x[n], for discrete–time signals and round parentheses, as in x(t), for continuous–time signals. This is the notation used in EECE 359 and EECE 369. Discrete–time signals arise in t...
متن کاملFourier Series
for some fixed τ , which is called the period of f . Though function approximation using orthogonal polynomials is very convenient, there is only one kind of periodic polynomial, that is, a constant. So, polynomials are not good for approximating periodic functions. In this case, trigonometric functions are quite useful. A large class of important computational problems falls under the category...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1946
ISSN: 0002-9947
DOI: 10.2307/1990311